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In many contexts it is important to understand the characteristics of
single populations of organisms. A wildlife manager, for example,
needs to predict what the density of a population of deer or cod would
be under different management plans. Or an agronomist may wish to
know the yield of a population of maize plants when planted at a par-
ticular density. In more theoretical applications, we are interested in
knowing, for example, the rate at which a population changes its den-
sity in response to selection pressure. These topics are typical of the
field called population ecology.

The unit of analysis is, not surprisingly, the population, a concept
that is at once simple and complicated. The simple idea is that a
population is a collection of individuals. But, as most ecologists in-
tuitively know, the idea of a population is considerably more com-
plex when one deals with the sort of real-life examples mentioned
above. To know what size limits one should place on catch for a fish
species, one must know not only how many fish are in the popula-
tion but also the size distribution of that population and how that
distribution is related to the population’s overall reproduction. To
decide when to take action on the emergence of pest species in
forests or farms, one must know the distribution of individuals
within life stages. In the determination of whether a species is
threatened with extinction, its distribution in space and the amount
of movement among subpopulations (i.e., metapopulation dynam-
ics) are far more important than simply its numerical abundance.
And, to cite the most cited example, the absolute abundance of 
the human population has little to do with anything of interest com-

Jellyfish sometimes form large populations that grow exponentially, at least for
a while.



pared with the activities undertaken by the members of that popu-
lation.

Thus, the subject of population ecology can be very complicated.
But, as we do in any science, we begin by assuming that it is simple.
We eliminate the complications, make simplifying assumptions, and
try to develop general principles that might form a skeleton upon
which the flesh of real-world complications might meaningfully be at-
tached. This chapter covers the first two essential ideas of that skele-
ton: density independence and density dependence.

Density Independence: The Exponential Equation

It is surprising how quickly a self-reproducing phenomenon becomes
big. The classic story goes like this: Suppose you have a lake with some
lily pads in it and suppose each lily pad replicates itself once a week. If
it takes a year for half the lake to become covered with lily pads, how
long will it take for the entire lake to become covered? If one does not
think too long or too deeply about the question, the quick answer
seems to be about another year. But a moment’s reflection retrieves the
correct answer, only one more week.

This simple example has many parallels in real-world ecosystems. A
pest building up in a field may not seem to be a problem until it is too
late. A disease may seem much less problematical than it really is. The
simple problem of computing the action threshold (the density a pest
population must reach before you have to spray pesticide) requires the
ability to predict a population’s size on the basis of its previous behav-
ior. If half the plants have been attacked within 3 months, how long
will it be before they are all attacked?

To understand even the extremely simple example of the lily
pads, one constructs a mathematical model, usually quite infor-
mally in one’s head. If all the lily pads on the pond replicate them-
selves once a week, then, in a pond half-filled with lily pads, each
one of those lily pads will replicate in the next week and thus the
pond will be completely filled up. To make the solution to the prob-
lem general we say the same thing, but instead of labeling the enti-
ties lily pads, we call them something general, say organisms. If or-
ganisms replicate once a week and the environment is half full, it
will take only one week for it to become completely full. Implicitly,
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the person who makes such a statement is saying out loud the fol-
lowing equation:

Nt+1 = 2Nt (1)

N is the number of organisms, in this case lily pads. Instead of t(time),
say this week, and instead of t + 1, say next week, and equation 1 is
simply “the number of lily pads next week is equal to twice the num-
ber this week.”

Of course, writing down equation 1 is no different than making any
of the statements that were made previously about it. But by making it
explicitly a mathematical expression, we bring to our potential use all
the machinery of formal mathematics. And that is actually good, even
though beginning students sometimes do not think so.

Using equation 1, we can develop a series of numbers that reflect the
changes of population numbers over time. For example, consider a
population of herbivorous insects: if each individual produces a single
offspring once a week, and those offspring mature and also produce an
offspring within a week, we can apply equation 1 to see exactly how
many individuals will be in the population at any point in time. Begin-
ning with a single individual we have, in subsequent weeks, 2, 4, 8, 16,
32, 64, 128, and so on. If we change the conditions such that the species
replicates itself twice a week, equation 1 becomes

Nt+1 = 3Nt (2)

(with a 3 instead of a 2, because before we had the individual and the
single offspring it produced, now we have the individual and the two
offspring it produced). Now, beginning with a single individual, we
have, in subsequent weeks, 3, 9, 27, 81, 243, and so on. 

We can use this model in a more general sense to describe the
growth of a population for any number of offspring at all (not just 2
and 3 as above). That is, write,

Nt+1 + RNt (3)

where R can take on any value at all. R is frequently called the finite
rate of population growth (or the discrete rate). 

It may have escaped notice in the above examples, but either of the
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series of numbers could have been written with a much simpler math-
ematical notation. For example, the series 2, 4, 8, 16, 32, is a actually 21,
22, 23, 24, 25, and the series 3, 9, 27, 81, 243, is actually 31, 32, 33, 34, 35. So
we could write,

Nt = Rt (4)

which is just another way of representing the facts as described 
by equation 3. (Remember, we began with a single individual, so
N0 = 1.0.) 

We now wish to represent the constant R (of equation 4) in a differ-
ent fashion, to make further exposition easier. It is a general rule that
any number can be written in many ways. For example, the number 4
could be written as 8/2, or 9 − 5, or 22, or many other ways. In a similar
vein, an abstract number, say R, could be written in any number of
ways: R = 2b, where b is equal to R/2, or R = 2b, in which case 
b = ln(R/2) (where ln stands for natural logarithm). If we represent R as
2.7183r, a powerful set of mathematical tools becomes immediately
available. The number 2.7183 is Euler’s constant, usually symbolized
as e (actually 2.7183 is rounded off and thus only approximate). It has
the important mathematical property that its natural logarithm is
equal to 1.0. 

So, rewrite equation 4 as,

Nt = ert (5)

which is the classical form of the exponential equation (where R has
been replaced with er). One more piece of mathematical manipulation
is necessary to complete the toolbag necessary to model simple popu-
lation growth. Another seemingly complicated but really rather simple
relationship that is always learned (but frequently forgotten) in ele-
mentary calculus is that the rate of change of the log of any variable is
equal to the derivative of that variable divided by the value of the vari-
able. This rule is more compactly stated as,

(6)

So, if we rewrite equation 5 as,

d
d

d
d

(ln )N

t N

N

t
=

1
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ln(Nt) = rt

we can differentiate with respect to t to obtain,

(7)

and we can use equation 6 to substitute for the left-hand side of 7 to
obtain,

and after multiplying both sides by N, we obtain,

(8)

Equations 5 and 8 are the basic equations that formally describe an
exponential process. Equation 8 is the differentiated form of equation
5, and equation 5 is the integrated form of equation 8. They are thus
basically the same equation (and indeed are quite equivalent to the dis-
crete form—equation 3). Depending on the use to which they are to be
put, any of the above forms may be used, and in the ecological litera-
ture one finds all of them. Their basic graphical form is illustrated in
figure 1.1.

In the examples of exponential growth introduced above, the param-
eter (r, or R) was introduced as a birth process only. The tacit assump-
tion was made that there were no deaths in the population. In fact, all
natural populations face mortality, and the parameter of the exponen-
tial equation is really a combination of birth and death rates. More pre-
cisely, if b is the birth rate (number of births per individual per time
unit), and d is the death rate (number of deaths per individual per time
unit), the parameter of the exponential equation is

r = b − d (9)

d
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where the parameter r is usually referred to as the intrinsic rate of nat-
ural increase.

One other simplification was incorporated into all of the above ex-
amples. We presumed always that the population in question was initi-
ated with a single individual, which almost never happens in the real
world. But the basic integrated form of the exponential equation is eas-
ily modified to relax this simplifying assumption. That is,

Nt = N0ert (10)

which is the most common form of writing the exponential equation.
Thus, there are effectively two parameters in the exponential equation:
the initial number of individuals, N0, and the intrinsic rate of natural
increase, r. 

Putting the exponential equation to use requires estimation of the
two parameters. Consider, for example, the data presented in table 1.1.
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Here we have a series of observations over a 5-week period of the aver-
age number of aphids on a corn plant in an imaginary corn field.

As a first approximate assumption, let us assume that this popula-
tion originates from an initial cohort that arrived in the milpa on
March 18 (one week before the initial sampling). We can apply equa-
tion 10 to these data most easily by taking logarithms of both sides,
thus obtaining,

ln(Nt) = ln(N0) + rt (11)

which gives us a linear equation of the natural logarithm of the num-
ber of aphids versus time (where we code March 18 as time = 0, March
25 as time = 1, April 1 as time = 2, etc. . . .). Figure 1.2 is a graph of this
line along with the original data to which it was fit, and figure 1.3 is a
graph of the original data along with the fitted curve on arithmetic
axes.

From these data we estimate 1.547 aphids per aphid per week added
to the population (i.e., the intrinsic rate of natural increase, r, is 1.547,
which is the slope of the line in figure 1.2). The intercept of the regres-
sion is −4.626, which indicates that the initial population was 0.0098
(that is, the anti ln of −4.626 is 0.0098), which is an average of about one
aphid per 10 plants. Now, if we presume that once the plants become
infected with more than 40 aphids per plant the farmer must take some
action to try and control them, we can use this model to predict when,
approximately, this time will arrive. The regression equation is,

ln(N of aphids) = − 4.626 + 1.547t

which can be rearranged as,
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TABLE 1.1
Number of Aphids Observed per Plant in a Corn Field

Date Number of Aphids ln(Number of Aphids)

March 25 0.02 −3.91
April 1 0.5 −0.69
April 8 1.5 0.40
April 15 5 1.61
April 22 14.5 2.67
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t = [ln(N of aphids) + 4.626]/1.547

The natural log of 40 is 3.69, so we have,

t = (3.69 + 4.626)/1.547 = 5.375

Translating this number into the actual date (April 22 was time = 5), we
see that the critical number will arrive about April 24 (actually at 3:00
P.M. on April 24, theoretically).

Naturally, the natural world contains many complicating factors,
and the exact quantitative predictions made by the model could be
quite inaccurate. As we discuss in later chapters, including some of the
complicating factors will increase the precision of the predictions. On
the other hand, April 24 really does represent the best prediction we
have, based on available data. It may not be a very good prediction,
but it is in fact the only one available. It may seem quite counterintu-
itive that, having taken five full weeks to arrive at only 14 aphids per
plant, in only 2 more days the critical figure of 40 aphids per plant will
be reached, but such is the nature of exponential processes. A simple
model like this could help the farmer plan pest control strategies.

Density Dependence: Intraspecific Competition

In the above section, we showed that any population reproducing at a
constant per capita rate will grow according to the exponential law. In-
deed, that is the very essence of the exponential law; each individual
reproduces at a constant rate. However, the air we breath and the 
water we drink are not completely packed with bacteria or fungi or in-
sects; as they would be if populations grew exponentially forever.
Something else must happen. That something else is usually referred
to as intraspecific competition, which means that the performance of
the individuals in the population depends on how many individuals
are in it; this concept is commonly known as density dependence. Den-
sity dependence is a complicated issue, one that has inspired much de-
bate and acrimony in the past and one that still forms an important
base for more modern developments in ecology.

The idea of density dependence was originally associated with the
human population and was brought to public attention as early as the
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eighteenth century by Sir Thomas Malthus (1830). Verhulst (1838) first
formulated it mathematically as the “true law of population,” better
known today as the logistic equation (see below). Later, Pearl and Reed
(1920), in attempting to project the human population size of the
United States, independently derived the same equation. While this
mathematical formulation was being developed, Gause (1934) and
other biologists initiated a series of laboratory studies with microor-
ganisms in which population growth was studied from the point of
view of competition, both intra- and interspecific.

In the early part of the twentieth century a variety of terms ap-
peared, all of which essentially referred to the same phenomenon: a
population approached some sort of carrying capacity through a dif-
ferential response of per capita population growth rate to different
densities. Chapman (1928) formulated the idea in terms of “environ-
mental resistance.” In 1928, Thompson redefined Chapman’s formula-
tion as “general” and “independent” of density versus “individual-
ized” and “dependent” on density, and later Smith (1935) proposed the
density-independent–density-dependent gradient. Thus, by the 1930s
the dichotomy of density independence versus density dependence
had taken firm root, after having been sown not long after the turn of
the twentieth century.

In the 1930s Nicholson and Bailey (1935) first formalized the concept
of regulation through density-dependent factors and clearly identified
the idea of intraspecific competition with density dependence (see also
Nicholson 1957). In Nicholson and Bailey’s conceptualization of den-
sity dependence, four points were proposed: (1) population regulation
must be density dependent; (2) predators and parasites may function
as density-dependent forces; (3) more than density dependence alone
may function to regulate population density; and (4) density depen-
dence did not always function to regulate population density.

In contrast to Nicholson and Bailey (and especially their later follow-
ers), Andrewartha and Birch (1954) held that the environment was not
divisible into density-dependent versus density-independent forces.
Andrewartha and Birch argued that, although resources could limit
populations, they rarely do so because some aspect of the physical en-
vironment (usually collectively referred to as the weather) almost al-
ways reduces the population before it becomes stressed by lowered re-
sources. They furthermore noted that the mathematical models that
presume equilibrium and persistence were not really necessary if there
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was no “balance” in nature (density dependence strongly implies some
sort of balance of nature). Most data sets failed to support the idea of
density dependence, and Andrewartha and Birch suggested that the
idea was possibly untestable. Rather, they argued, the regulation of
populations was frequently taken as an article of faith. The problem
was, How long could a population persist without regulation? Their
recognition of the fact that local populations would frequently go ex-
tinct but would be refounded from other population centers antici-
pated ideas of metapopulations that would become popular some 20
years later. 

Milne (1961) modified both versions of population regulation (the
density-dependent and density-independent schools) and noted that
perfect density dependence, if it ever exists, does so only at very high
densities. Rather, what most characterizes populations in nature is
what might be referred to as imperfect density dependence (similar 
to what Strong [1986] referred to as “density vagueness”); predators
and parasites plus density-independent effects usually held popula-
tions below levels at which intraspecific competition could become 
important. 

Finally, several variations on the basic theme have recently emerged.
Levins (1974) introduced the notion of positive and negative feedback
loops for analyzing the dynamics of a population. Dempster (1983)
suggested that density independence could be operative within limits,
such that an upper ceiling would be imposed upon the population and
a lower limit would prevent the population from going extinct. Almost
all of these variations are fundamentally in the density-dependence
camp but with strong notions of nonlinearities and the importance of
spatial distribution, topics discussed in later chapters.

In the end, it would seem that the entire debate about density-
dependent versus density-independent control of populations was 
focused on a false dichotomy. In a variety of guises (e.g., metapopula-
tions, as discussed in chapter 5), modern ecology has come to acknowl-
edge that density-dependent and density-independent forces may
function together to regulate populations in nature. But more impor-
tant, there is general agreement that the rate of growth or decline of a
population relative to its size does not necessarily suggest any particu-
lar mechanism of regulation. However, there is a recent burgeoning lit-
erature, beyond the intended scope of this text, that seeks to use
advanced methods of analysis of long-term data sets to determine
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whether density dependence operates (Hastings et al. 1993). Part of
this later literature is associated with the possibility that many popula-
tions under density-dependent control actually may be chaotic (dis-
cussed more fully in chapter 3). Chaotic populations can easily be con-
fused with random populations. One way of resolving some of the
earlier debates about density dependence was to acknowledge that ex-
treme density dependence (which would promote chaos) could easily
produce population behavior that looked quite density independent
(i.e., chaotic) (Gukenheimer et al. 1977). 

As one can see from the previous paragraphs, the literature on den-
sity dependence is enormous. Yet much of it can be divided conceptu-
ally into three categories. First, the effect of density on the growth rate
of the population (be it through declining reproduction or increased
mortality) is simply added to the exponential equation to form the fa-
mous logistic equation (as discussed below). Traditionally, the logistic
equation is expressed in continuous time as a differential equation, but
recently a large literature has been generated by consideration of the
special properties of the logistic idea expressed in discrete time, the lo-
gistic map. The logistic equation, either its continuous or discrete form,
treats the population growth rate as a single constant, even though we
understand it actually represents birth rate minus death rate. Other ap-
proaches treat each of these rates separately. 

Decomposing the population growth rate into its two components,
the second category focuses on the relationship between density and
reproduction (i.e., density modifies birth rate). We guess that the first
acknowledgment of density dependence in nature was by the world’s
earliest farmers. When one is planting crops, it soon becomes apparent
that higher planting densities provide higher yields (which, in princi-
ple, are correlated with reproductive output), but only to a point. Once
you reach a high enough density, further increases in density fail to
provide further increases in yields. This general relationship is referred
to as the yield–density relationship and is, in some respects, the most
elementary form of density dependence. Originally developed mainly
in the agronomy literature, the relationship between density and yield
subsequently became an important theoretical baseline for general
plant ecology. Yield was usually a product of reproduction, because the
subject was mostly the yield of seed crops such as corn and soybeans,
and thus the subject of yield and density can be thought of more gener-
ally as the relationship between density and reproduction.
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Finally, the third category examines the possibility that density af-
fects survivorship rather than reproduction (i.e., density modifies
death rate). The main literature on this topic was originally conceived
by forest ecologists, but the idea has since been generalized as self-
thinning laws, which are mainly used in plant ecology. The yield–
density relationship, discussed in the previous paragraph, involves
examining yields of different populations that have been sown at dif-
ferent densities. It is a static approach in this sense. Once established
through sowing, the population density remains constant and the vari-
able of interest is the yield. An alternative approach is more dynamic
and follows changes in both size (biomass) and density over time in
the same population. This more dynamic approach considers mortality
as well as growth, and in the context of forestry, where it was originally
developed, mortality is known as thinning. 

In the following three sections, we follow this basic schema: (1) 
the logistic equation, (2) yield–density relations, and (3) self-thinning
laws.

The Logistic Equation

Density dependence is generally regarded as the major modifier of the
exponential process in populations. Consider the data shown in figure
1.4 for example (Vandermeer 1969). The protozoan Paramecium bursaria
was grown in bacterial culture in a test tube, and the data shown are
for the first 11 days of culture (data are number of cells per 0.5 ml). In
figure 1.5 those numbers are shown as a graph of lnN versus time (re-
call how the intrinsic rate of natural increase was estimated in this
way).

The relationship is approximately linear (see figure 1.5), and our
conclusion would be that the population is growing according to an
exponential law. If this equation were followed into the future, we
would have a very large population of Paramecium. Indeed, consider-
ing the size of P. bursaria, there could be about 3000 individuals in 0.5
ml if you stacked them like sardines. Thus, the 3001st individual
would cause all the animals to be squeezed to death, and we can com-
pute exactly when this event will happen. 

ln(3001) = 0.337t + 1.239

14 CHAPTER 1



ELEMENTARY POPULATION DYNAMICS 15

0

50

100

150

Time, Days

N
 o

f 
P.

 b
u

rs
ar

ia
 (

no
. o

f c
el

ls
/0

.5
 m

l)

0 5 10 15

Figure 1.4. Growth of a culture of Paramecium bursaria in a test tube 
(Vandermeer 1969).

1

2

3

4

5

Time

In
(N

 o
f 

P.
 b

u
rs

ar
ia

)

0 105

In(N of P. bursaria) = 0.337t + 1.239

Figure 1.5. Logarithmic plot of the data of figure 1.4.



which can be arranged to read,

t = [ln(3001) − 1.239]/0.337 = 20.80

Thus, on the basis of an 11-day experiment, we can conclude that after
about 20 days, the test tube will be jam-packed with P. bursaria such that
all the individuals will suddenly die when that 3001st individual is pro-
duced. The actual data for the experiment carried out beyond the 20-
day expected protozoan Armageddon is shown in figure 1.6. These data
suggest that something else happened. As the density of the Paramecium
increased, the rate of increase declined, and eventually the number of
Paramecium reached a relatively constant number. The theory of expo-
nential growth must be modified to correspond to such real-world data.

Begin with the exponential equation, but assume that the intrinsic
rate of growth is directly proportional to how much resource is avail-
able in the environment. Thus, we have,

dN/dt = rN (12)

the classical exponential equation discussed earlier in this chapter. But
here we presume that r is directly proportional to F (r = bF), where F is
the amount of resource (F for food) in the system that is available for
the population and the constant b represents the efficiency of convert-
ing food to babies. Thus, equation 12 becomes,

dN/dt = bFN (13)

But now we assume that there is no inflow of resource into the system
so that the total amount of resource is constant and is divided up into
that part that is useable by the population and that part that has al-
ready been used. That is, 

FT = F + cN (14)

where FT is the total amount of resource in the system and c is the
amount of F held within each individual in the population. Equation
14 can be manipulated to read,

F = FT − cN (15)
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Substituting equation 15 into equation 13, we have,

dN/dt = b(FT − cN)N (16)

whence we see that equation 16 is a quadratic equation. Finding the
equilibrium point, that is, the point at which the population neither in-
creases nor decreases, is done by setting the population growth rate
equal to zero, thus obtaining,

0 = b(FT − cN)N

which has two solutions. The first solution is at N = 0, which simply
says the rate of change of the population is zero when there are no in-
dividuals in the population. The second solution is at FT/c, which is
the maximum value that N can have. This is the value of N for which
F = 0, when all the resource in the system is contained within the bodies
of the individuals in the population. Because the limitations of the en-
vironment are more or less stipulated by the value of FT, and the maxi-
mum number of individuals that that environment can contain is FT/c,
the value FT/c is frequently referred to as the carrying capacity of the
environment (the capacity the environment has for carrying individu-
als). The traditional symbol to use for carrying capacity is K, so we
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write K = FT/c. We also note that as the population approaches zero (as
N becomes very small but not exactly at zero), the rate of increase of
the original exponential equation will be bFT (since the general equa-
tion is bF and when N is near to zero F is almost the same as FT). After
some manipulation of equation 16 we can write,

dN/dt = bFTN[(FT/c) − N)/(FT/c)]

and now substituting r = bFT and K = FT/c we obtain

(17)

which is the classic form of the logistic equation. Note the form of the
equation. It has a very simple biological interpretation. The quantity
(K − N)/K is the fraction of total available resource that remains avail-
able: that is, the fraction of the carrying capacity that has not yet been
taken up by the individuals in the population. As shorthand we might
refer to this quantity—the fraction of the carrying capacity or the frac-
tion of total available resource—as the available niche space. Then the
logistic equation is obtained by multiplying the original intrinsic rate
of increase, r, by the available niche space. 

Returning to the earlier example of Paramecium bursaria, a glance at
the data suggests that the carrying capacity is around 290 individuals
(average all the points after the data have leveled off). The original esti-
mate of r as 0.337 was probably too low (since the effects of density de-
pendence were probably effective even during the time of the initial
growth) so taking a slightly larger value, let r = 0.5. The logistic equa-
tion for these data then becomes,

which is plotted in figure 1.7, along with the original data. This exam-
ple represents a reasonably good fit to the logistic equation. 

The existence of density dependence also calls into question the ex-
trapolations that one is tempted to make from a process that seems in-
exorably exponential. The example earlier in this chapter of the aphids
in the milpa agroecosystem is a case in point. Concluding that the

d
d
N
t

N
N

=
−





0 5
290

290
.

d
d
N

t
rN

K N

K
=

−( )

18 CHAPTER 1



farmer had only 2 days before disaster struck may have been correct,
but it also could have been grossly in error, depending on the strength
of the density dependence. Indeed, with strong density dependence,
the field’s carrying capacity for the herbivore could have been below
the threshold where the farmer needed to take action, in which case no
action at all would have been necessary.

In some management applications (e.g., fisheries), it is desirable to
maximize the production of a population, which is to say maximize
the rate of increase, not the actual population. The logistic equation
can provide a useful guideline for such a goal because it is reasonably
simple to show that the maximum rate of increase of the population
will occur when the population is equal to K/2. Thus, once the carry-
ing capacity is known, the population density at which the rate of
growth will be maximized is automatically known. In actual practice
this so-called maximum sustained yield has some severe problems as-
sociated with it, largely stemming from the simplifying assumptions
that go into its formulation (these issues are more fully discussed in
chapter 4).

Using much of the same reasoning as above, we can formulate den-
sity dependence in discrete time rather than continuous time. Rather
than asking how a population grows instantaneously, we can ask how
many individuals will be in the population next year (or some other
time unit in the future) as a function of how many are here now.  Recall
equation 3 from the section on the exponential equation,
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Nt+1 = RNt

which is a statement of population growth in discrete time. Now,
rather than proceed with a generalization about what numbers will be
in a future time (which was the development taken earlier), we remain
in the realm of discrete time and ask what might be the necessary mod-
ifications to make this equation density dependent. In other words,
what do we come up with if we use the same rationale we used in de-
veloping the logistic equation, but this time do it in discrete time?

It seems reasonable to suppose that the population will grow slowly
if the population is near its carrying capacity (K) and will grow more
rapidly if it is far below its carrying capacity. This is the same as saying
that R varies with population density. If we simply allow R to vary
with density (the same conceptual approach we took with the logistic
equation), we could write,

R = r(K − Nt)/K

which would make the original equation

Nt+1 = r[(K − Nt)/K]Nt

Frequently, the carrying capacity is set equal to 1.0, a transformation
that does not change the qualitative behavior of the equation and
makes it easier to work with. Thus we have,

Nt+1 = rNt(1 − Nt)

(Note that the parameter r here refers to discrete population growth,
whereas earlier it refers to continuous growth.) This equation is usu-
ally referred to as the logistic map (map, because it maps N1 into N2) or
the logistic difference equation. It has some remarkable features that
will be explored in more detail in chapter 4. We add a small technical
note here. The logistic map is not what you get when you integrate the
logistic differential equation and then solve for Nt+1 in terms of Nt, al-
though the perceptive reader might be excused for thinking it so since
both equations are called logistic. The logistic map is derived directly
from first principles (as above). Integrating the logistic differential
equation gives a different time interval map.
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The Yield–Density Relationship

The process of intraspecific competition (density dependence) is cer-
tainly ubiquitous and thus legitimately calls for a theoretical frame-
work, the most common and general of which is the logistic equation.
However, for many applications it is not sufficient to consider only
population growth rate. We also want to decompose that rate into its
component parts, birth rate and death rate. In this section we consider
the effect of density on birth rate. This theory developed from work on
plants, especially in agroecosystems. Farmers need to know the rela-
tionship between planting density and the yield of a crop (which is 
frequently the seed output). This relationship is known as the yield–
density relationship and is the basis of much agronomic planning as
well as a springboard for much general plant ecology. For our pur-
poses here, the yield–density relationship provides the most elemen-
tary form of the effect of intraspecific competition on reproduction and
lays bare its essential elements. We thus give considerable space to the
development of the principles of intraspecific competition as reflected
in the yield–density relationship (Vandermeer 1984).

The formal elaboration of yield–density relationships first appeared
in 1956 with Shinozaki and Kira’s work. Shinosaki and Kira noted, as
had many workers before them, that plotting yield versus density for
various plant species usually results in a characteristic form. Several
examples are shown in figure 1.8.

Shinozaki and Kira suggested a simple hyperbolic form:

Y = Dwmax/(1 + aD)

where D is population density, Y is yield, wmax is the unencumbered
(i.e., without competitive effects) yield of an individual plant, and a is
an arbitrary constant. This equation asymptotes as D becomes very
large and thus corresponds to another well-known empirical observa-
tion in plant ecology known as the law of constant final yield (which
actually is not always true as discussed below). Figure 1.9 shows
Shinozaki and Kira’s equation in comparison with the rape data of fig-
ure 1.8.

Much of this empirical curve fitting can be rationalized with some
simple plant competition theory. We begin by considering what might
happen with individual plants and later accumulate those plants into a
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population so as to examine the effect of density. Consider a single
corn plant in a pot. When provided with all necessary light, water, and
nutrients, it will grow to some specified height with some specified
biomass. If two corn plants are planted in a pot of the same size and
provided with the same amount of light, water, and nutrients, each of
the corn plants will attain a biomass smaller than the corn plant grown
alone, because the same amount of resources is being used by two indi-
viduals rather than one. If we symbolize the biomass attained when a
plant is growing alone as k, we can write the simple relationship,

w1 = k − αw2 (18)

where w1 refers to the biomass (usually estimated as dry weight) of the
first plant, w2 to the biomass of the second plant, and α is the propor-
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Figure 1.8. Exemplary yield versus density data (from Willey and Heath 1969).



tionality constant that relates the decrease in biomass of the first indi-
vidual as a proportion of the biomass of the second individual. Rear-
ranging equation 18, we see that 

α = (k − w1)/w2 (19)

This same development could be applied to three plants growing in a
single pot, in which case the equation describing the results would be,

w1 = k − α1,2w2 − α1,3w3 (20)

where α1,2 is the effect of a unit of biomass of individual 2 on the bio-
mass of individual 1 and α1,3 is the effect of a unit of biomass of indi-
vidual 3 on the biomass of individual 1. The parameter α is frequently
referred to as a competition coefficient because it represents the effect
of one individual on another. The calculation of α from real data is
quite easy when we have only two plants: Grow a single plant in a pot
and measure its biomass after some specified time, giving the value of
k; then grow two plants in a pot and measure their biomasses, giving
the values of w1 and w2; then apply equation 18 to determine the value
of α. The estimation of the competition coefficients when there are
more than two individuals is somewhat more complicated but need
not concern us at this point. For now it is important only to understand
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the logic of the thinking that went into the construction of equation 19.
We now proceed to generalize equation 20.

Let us suppose that instead of just two or three individuals planted
in a pot, we plant a large number of individuals. If the total number
planted is n, we can expand equation 19 by simply adding more terms
until we have added all n individuals to the calculation. That is, equa-
tion 20 for n individuals becomes,

w1 = k − α1,2w2 − α1,3w3 − . . . − α1,nwn

or, more compactly,

w1 = k − Σ αi,jwj (21)

where the summation is taken from j = 2 to j = n. If all the individuals
are exactly the same, it might be argued that all the αi,j values are
equal. As a first approximation this is probably a good assumption.
However, there is a crucial way in which the competition coefficients
differ from one another, as becomes evident when we try to elaborate
this same example from the level of a pot to the level of a field, below. 

For now assume (a bit unrealistically) that all individuals produce
the same biomass and the competition between any two pairs of indi-
viduals is identical from pair to pair (or assume we can substitute the
mean values for biomass and competition). The summation over i and
j now represents the summation of two constants exactly D (density of
the population) times, so we can thus write,

w′ = k − Dα′w′ (22)

where D is the population density, and the primes in this case indicate
mean values. Equation 22 can be rearranged as follows:

w′ + Dα′w′ = k

or

w′ (1 + α′D) = k

and finally,
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(23)

If w′ is the biomass of an average individual in the population, the 
total population yield must be,

Y = w′D

and substituting from equation 23 for w′, we obtain,

(24)

which is identical to the empirical equation of Shinozaki and Kira (we
have eliminated the prime from the competition coefficient to make the no-
tation less messy). The advantage of equation 24 is that, because the
derivation is based on plant competition theory, the parameters in the
equation have obvious meaning, k being the unencumbered yield of an
average individual plant and α being the mean competition coefficient
between two individual plants.

An additional complication arises when we have data like the maize
data of figure 1.8, where at high densities the yield actually falls. To ac-
commodate data such as these, Bleasdale and Nelder (1960) suggested
modifying the basic Shinozaki and Kira equation with an exponent,
citing either, 

or

as reasonable approximations to data that are shaped parabolically.
The constant b is, in the context of Bleasdale and Nelder’s derivation, a
fitted constant that they presume is related to an allometric effect (i.e.,
the harvested material is produced proportionally less at higher densi-
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ties of the plant). Either equation reduces to Shinzaki and Kira’s equa-
tion when b = 1.0. Bleasdale and Nelder chose the first of those two
equations arbitrarily, and it has become a standard in the plant ecology
literature. It is worth noting that it is not only the allometric effect that
can produce a yield density curve that descends at high densities. An
increase in competitive intensity as individuals get closer to one an-
other also will create the effect of declining yield with high density
(Vandermeer 1984).

Either of Bleasdale and Nelder’s equations can be viewed as a dis-
crete map, much like the logistic map, although with slightly different
properties. If we think of yield as the number of organisms that will be
found in the population in the next generation, this equation becomes
equivalent to an iterative map (like the logistic map). The properties of
these sorts of maps will be discussed in detail in chapter 4.

Density Dependence and Mortality: Thinning Laws

In the above developments, we assumed that density dependence acts
in such a way that the growth of individuals is slowed by a larger pop-
ulation and that a decline in individual growth rate leads to a lower
birth rate that eventually stabilizes the population at some particular
number. In our development of the logistic equation, no explicit as-
sumption was made about birth or mortality, and the derivation re-
volved around the intrinsic rate of natural increase, which includes
both death and birth rates. However, implicitly in the section on the lo-
gistic and explicitly in the above section on the yield–density relation-
ship, the assumption was that we were dealing exclusively or mainly
with birth rate modifications rather than death rate modifications. 

There are times where the distinction between birth rate and death
rate modifications can be crucially important. For example, the growth
in biomass of a plantation of trees is usually approximately logistic in
form, but the same logistic equation could account for the pattern in ei-
ther figure 1.10A or 1.10B. And the difference between the two figures
is not trivial from a forester’s point of view. In figure 1.10A there are
large numbers of very small trees, none of which is harvestable; in fig-
ure 1.10B there are a smaller number of larger trees. The point is that in
figure 1.10A there has been a great deal of intraspecific competition,
but it took the form of each individual’s growing slowly and almost no
mortality, whereas in figure 1.10B one of the main responses to in-
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traspecific competition was for some individuals to die while others
continued growing rapidly. The biomass of the forests in the two fig-
ures is the same (that is the way the example was constructed), but one
will be useful for harvest, the other not. Similar examples could be
given for any organism with indeterminate growth. For example,
many fish become stunted when in very dense populations and thus
represent less of an attraction for sport or commercial fishing.

Reflect for a moment on the pattern of growth and mortality in a
densely planted tree plantation or in a natural forest when large num-
bers of seeds germinate more or less simultaneously. First, seedlings
are established at a very high density. Walking through a beech–maple
forest, for example, one is struck by the carpet of maple seedlings in al-
most every light gap one encounters. As the seedlings grow, the in-
crease in biomass of each individual treelet is limited by intraspecific
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competition. But when populations are sufficiently dense, inevitably
some individuals come to “dominate” (grow larger) while others be-
come “suppressed” (remain small owing to competition from their
neighbors). Eventually, the suppressed individuals die, and we say
that the population has been thinned. But then the trees keep on grow-
ing and the process repeats itself; some trees are suppressed, others
dominate. In this way, a population of plants that began at a very high
density is thinned to the point that the adults are at some sort of carry-
ing capacity. In some ways, this process seems to be the reverse of what
was described in the development of the logistic equation. Here, we
begin with a number larger than K, and through the process of thin-
ning the population is reduced to K, rather than beginning with a small
population and increasing to the value of K. On the other hand, re-
member that biomass is increasing throughout the process.

This phenomenon is most easily seen as a graph of log of biomass
versus log of density at harvest time, as shown with the data in figure
1.11 and more schematically in figure 1.12. But the whole idea is much
more dynamic. To look at the dynamics, take a single starting density
and observe changes in biomass (or some related variable). If no mor-
tality occurs, we expect a straight vertical line; that is, the per plant bio-
mass increases, but the population density remains constant (see figure
1.12A). But if there is mortality, over time, the curve will shift to the
left, to lower densities, while at the same time the per plant biomass
will have increased (see figure 1.12B). If, on the other hand, we had 
begun with two different populations at slightly different densities we
would see that plants of both populations would increase biomass. As-
suming that densities were such that this increase in biomass hap-
pened without competition, the two populations will grow in biomass
the same amount (see figure 1.12C). Now if we let both of these popu-
lations continue to grow, we expect some thinning (mortality) to occur,
especially in the denser population (figure 1.12D). 

Here, we can see both a plastic effect on growth and a mortality ef-
fect. The plastic effect is a smaller biomass increase at larger densities,
as shown in figure 1.12D. The mortality effect is seen as a decrease in
density at higher densities, as shown in figure 1.12D. If we continue
the pattern of development illustrated in figure 1.12 through time, we
see that each population begins its process of thinning as it approaches
a theoretical thinning line, as can be seen in the data shown in figure
1.13. Once mortality starts, the population tends to follow a straight
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line on a log-log scale. This kind of relationship has been shown many
times—most often in herbaceous plants over time or in comparisons of
woody plant plantations at different densities.

This self-thinning law (called self because no forester or agronomist
is there doing it) was first developed for plants but many animals
show a similar pattern. This is a very nice way of showing growth
and mortality effects of density on the same graph. But it also pro-
vides an elegant way of looking at density-dependent mortality that
can be easily compared among species on very different time scales
because time is not explicit. Furthermore, some time ago plant ecolo-
gists noticed that this process of self-thinning always seemed to take
on a particular pattern. In plots of the logarithm of the biomass of an
average individual plant versus the population density at the time
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the biomass was measured, the points in a thinning population ap-
peared linear, and the slope of the line always appeared to be nearly
−3/2 (as in figures 1.11 and 1.13), providing the population was un-
dergoing thinning. This phenomenon is known as the three-halves
thinning law.

Yoda and colleagues (1963) provided an elegant theory explaining
the origin of the law. Suppose that each plant is a cube. If each side of
the cube is x, the area of one of the cube’s faces is x and the volume of
the cube is x3. Now we imagine that the plantation is made up of a
large number of these cubes and they begin growing and thinning
through intraspecific competition. The overall process is illustrated in
figure 1.14. The area of the plantation is A. The population density will
be the total area divided by the surface area occupied by a single plant
(that is, a single cube). Thus, D, the population density, is equal to
A/x2. We now presume that the biomass, w, of an individual plant is
approximately equal to the volume of the cube representing it, so that
w = x3. So we have the pair of equations,

D = A/x2

and

w = x3

Rearranging these equations we write,

x = A1/2D−1/2

and

x = w1/3

Since the left-hand side of both equations is equal to x, we can set the
right-hand sides of the two equal to each other, giving, 

A1/2D−1/2 = w1/3

which simplifies to,
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w = A3/2D−3/2

which can be put in the more standard form,

ln(w) = (3/2)ln(A) − (3/2)ln(D)

which represents a straight line with a slope of −3/2 on a graph of
ln(w) versus ln(D). 

Thus we see from very simple reasoning that it is not unusual to ex-
pect the three-halves thinning law. On the other hand, the basic empir-
ical base of the “law” has been persistently questioned (e.g., Westoby
1984). In fact only a few data sets conform convincingly exactly to a 
− 3/2 slope, and many ecologists feel that data such as those shown in
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figures 1.12 and 1.13 are actually exceptions to a rule that is something
other than −3/2. It is worth noting that, alongside this general consen-
sus that the three-halves thinning law is not correct, its theoretical basis
is quite shaky to start with. Plants are not, after all, cubes, and the fact
that their thinning pattern does not follow the 3/2 thinning law exactly
is not all that surprising. But the basic idea still seems sound. We
should expect a linear relationship between the log of the biomass and
the log of the density, and that appears to be almost always true. While
we expect the slope of that line to be −3/2 in the case of plants shaped
like cubes, most plants are not shaped like that. It is perhaps best to
treat the 3/2 thinning law something like the Hardy-Weinberg law
(Futuyma 1979), something that ought to be true under ideal condi-
tions but rarely happens in fact because those ideal conditions are
hardly ever met.
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